PSYCHO-SEMANTIC MICROSEGMENTATION OF SOCIAL NETWORK USERS
Keywords:
психосемантика, семантичний аналіз, соціальні мережіAbstract
This paper deals with the problems of use of psycho-semantic methods for the analysis of social media content aimed at user micro-segmentation, i.e. classifying network communities into small groups having relatively uniform features, which determine some specific reactions to certain types of information. Micro-segmentation creates the possibilities of more precise and impartial study and forecasting of the individuals’ behavior and their reactions to the events in their environment, in particular, to the product and service offerings in the markets. The objective of the research, the results of which are described in this paper, was to contribute to the development of effective practical methods of psycho-semantic analysis of the content of social network users’ personal pages and determine the possibility to use semantic elements of those pages for finding statistically significant relationships with the factors of Internet audiences’ micro-segmentation. A large volume of current structured information placed in social networks allows for using a significant number of segmentation criteria and, therefore, studying small specific segments of prospective customers, suppliers of goods and services and other stakeholders. The relevant research may focus on finding statistically significant relationships between semantic features of social network users’ pages and the attention paid by those users to specific blocks of information. The research done confirmed the possibility to determine statistically significant dependencies, which enable the use of psycho-semantic characteristics of social network users’ personal pages for the purposes of micro-segmentation of organizations’ target audiences. In the course of the research the semantics of the personal pages in VKontakte social network was analyzed. The pages researched belonged to the subscribers of the groups created within the social networks by realtor companies located in a regional center of Ukraine. The resulting analytical data, which characterizes individual semantic spaces of social networks’ users, may present a considerable interest both for applied research in the psychology of purchasing behavior and for marketing services of commercial companies developing advertisement campaigns involving the necessity to determine efficient semantic structures for advertising and public relation texts.References
Offsey, S. Micro-segmentation in the age of big data [Electronic resource] / S. Offsey. – 2014. – Access mode: http://marketbuildr.com/blog/segmentation-in-the-age-of-big-data/.
Петренко, В. Ф. Основы психосемантики / В. Ф. Петренко. – М : МГУ, 1997. – 400 с.
Grimes, S. Breakthrough Analysis: Two + Nine Types of Semantic Search [Electronic resource] / S. Grimes // Information Week, Jan. 2010. – Access mode: http://www.informationweek.com/software/information-management/breakthrough-analysis-two-+-nine-types-of-semantic-search/d/d-id/1086310?.
Zamanzadeh, B. Semantic advertising [Electronic resource] / B. Zamanzadeh, N. Ashish, C. Ramakrishnan, J. Zimmerman. – 2013. – Access mode: http: //arxiv.org/abs/1309.5018.
Шапіро, О. О. Семантичні засади моделювання комунікативного дискурсу в інтернет-просторі / О. О. Шапіро // Вісник Національного університету "Юридична академія України імені Ярослава Мудрого". Серія : Філософія, філософія права, політологія, соціологія. – 2014. – № 3 (22). – С. 50-56.
Aquino, J. Transforming social media into predictive analytics / J. Aquino // Customer. Relationship Management. – Nov., 2012. – p. 38-42.
Карпенко, О. Украинцы в социальных сетях: масштабное исследование "Яндекса" [Електронний ресурс] / О. Карпенко. – 2014. – Режим доступу: http://ain.ua/2014/08/21/537620.
ЛIГАБiзнесIнформ. Названы самые популярные соцсети среди украинцев [Електронний ресурс] / ЛIГАБiзнесIнформ. – 2016. – Режим доступу: http://biz.liga.net/ekonomika/telekom/novosti/3405712-nazvany-samye-populyarnye-sotsseti-sredi-ukraintsev.htm.
Bustos, L. Personalization Through Customer Self-Segmentation [Electronic resource]. / L. Bustos. – Access mode: http://www.getelastic.com/personalization-through-customer-self-segmentation/.
Руденко, В. М. Математична статистика: навч. посіб. / В. М. Руденко. - К. : Центр учб. л-ри, 2012. - 304 с.
Downloads
Issue
Section
License
Copyright (c) 2017 Chernihiv National University of Technologies
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. Політика, яка рекомендується журналам, що пропонують відкритий доступ Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).